Rajasthan schools' Computer Department Std. : 7 Chapter 2 Number System

Textual exercises

A) Choose the correct answer.

- 1) Computer recognize only two discrete states, i.e.....
 - a) Yes and No b) Right and Wrong c) **On and Off**
- 2) The On and Off states are represented by
 a) 0 and 1
 b) 1 and 2
 c) 2 and 1
- 3) The base 8 number system isa) Hexadecimalb) Binaryc) Octal
- 4) The digit 'zero' represents the electronic state
 a) On
 b) off
 c) None
- 5) The number system used internally by all modern computers isa) Hexadecimalb) Binaryc) Octal
- 6) The digits used in Octal number system are from
 a) 0 to 9
 b) 0 and 1
 c) 0 to 7

B) Write True / False of the following statements.

- 1) Every character in a computer has an assigned numeric code, called its ASCII code. [T]
- 2) The decimal number system has just two unique digits, 0 and 1.
- 3) A byte is used to represent a single character in the computer. [F]
- 4) A group of 8 bits is called kilobyte.
- 5) A nibble is a collection of 5 bits.

C) Fill in the blanks.

- 1) In computers, characters have to be represented in the form of <u>0s and 1s.</u>
- 2) In a positional number system, there are only a few symbols called <u>digits</u>.
- 3) The **<u>Binary</u>** Number System represents numeric values using two symbols, i.e., 0 and 1.
- 4) The Decimal Number System has <u>10</u> as its base.
- 5) The Octal Number System has <u>8</u> as its base.
- 6) The Hexadecimal Number System includes the symbols <u>0 to 9</u> and <u>A to F</u>.

[F]

[F]

[F]

D) Define the following.

- 1. Bit: The smallest unit in computer processing is called Bit. It is a unit of data that can be either of the two conditions, 0 or 1.
- 2. Byte: A group of 8 bits is called a Byte.
- 3. Nibble: Half a byte is called Nibble. A nibble is a collection of bits on a 4-bit boundary.

E. Differentiate between the following.

- Positional Number System: The positional system depends on where the numbers are placed in the sequence of numbers. Non-positional Number System: The non-positional system does not depend on the position of the number and symbols are used to represent the number.
- Binary number system: Binary is a base 2 number system (bi means two), and the symbols it uses are 0 and 1. In binary, the place values, moving from right to left, are successive powers of two (2°, 2¹, 2², 2³ or 1, 2, 4, 8)

Decimal number system: The decimal number system is a base 10 number system (deci means ten). The base of a number system indicates how many symbols it uses. The decimal number system uses 10 symbols: 0 to 9. Each of the symbol in the number system has a value associated with it.

 Octal number system: In an octal number system, the base is 8. Hence, there are only eight symbols or digits: 0, 1, 2, 3, 4, 5, 6, and 7 (8 and 9 do not exist in this system).

Hexadecimal number system: The hexadecimal number system uses 16 digits including 6 letters of alphabet (hex means six). These include the symbols 0 to 9 and A to F.

F) Answer in one word:-

- 1) A group of 8 bits is called what?
- A) Byte
- 2) How many types of number systems are there? Which are they?
- A) Two, 1) non-positional number system 2) positional number system
- 3) What is a collection of bits on a 4 bits boundary?
- A) A nibble
- 4) The smallest unit in computer processing is called what?
- A) Bit
- 5) Which number system depends on the position where the numbers are placed in the sequence of numbers?
- A) Non-positional number system
- 6) Which number system does not depend on the position of the number, and symbols are used to represent the number?
- a) Positional system

Activity Section Convert the following.

1. Decimal to Binary

i. 345

2	345	
2	172	1
2	86	0
2	43	0
2	21	1
2	10	1
2	5	0
2	2	1
	1	0

Ans (101011001)₂

iii. 145

2	145	
2	72	1
2	36	0
2	18	0
2	9	0
2	4	1
2	2	0
	1	0

Ans (10010001)₂

ii. 113

2	113	
2	56	1
2	28	0
2	14	0
2	7	0
2	3	1
	1	1

Ans (1110001)₂

iv. 287

2	287	
2	143	1
2	71	1
2	35	1
2	17	1
2	8	2
2	4	0
2	2	0
	1	0

Ans (100011111)₂

2. Binary to Decimal

_

I.
$$(111)_{2} = (1 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$

 $(1 \times 4) + (1 \times 2) + (1 \times 1)$
 $4 + 2 + 1 = (7)_{10}$
ii. $(1101)_{2} = (1 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$
 $(1 \times 8) + (1 \times 4) + (0 \times 2) + (1 \times 1)$
 $8 + 4 + 0 + 1 = (13)_{10}$
iii. $(1001)_{2} = (1 \times 2^{3}) + (0 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$
 $(1 \times 8) + (0 \times 4) + (0 \times 2) + (1 \times 1)$
 $8 + 0 + 0 + 1 = (9)_{10}$
iv. $(1011)_{2} = (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$
 $(1 \times 8) + (0 \times 4) + (1 \times 2) + (1 \times 1)$
 $8 + 0 + 2 + 1 = (11)_{10}$

3. Decimal to Octal

i. 45

ii.	70

8	45	
8	5	5
	0	5

8	70	
8	8	6
8	1	0
	0	1

Ans (55)₈

Ans (106)₈

Decimal to Hexadecimal 4.

i. 22

-	220	
	220	

16	22	
16	1	6
	0	1

Ans (16)₁₆

16 330 10 16 20 16 1 4 1 0

Ans (14A)₁₆

(because A = 10)